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Abstract

Most people have left-hemisphere dominance for various aspects of language

processing, but only roughly 1% of the adult population has atypically reversed, right-

ward hemispheric language dominance (RHLD). The genetic-developmental program

that underlies leftward language laterality is unknown, as are the causes of atypical

variation. We performed an exploratory whole-genome-sequencing study, with the

hypothesis that strongly penetrant, rare genetic mutations might sometimes be

involved in RHLD. This was by analogy with situs inversus of the visceral organs (left-

right mirror reversal of the heart, lungs and so on), which is sometimes due to mono-

genic mutations. The genomes of 33 subjects with RHLD were sequenced and ana-

lyzed with reference to large population-genetic data sets, as well as 34 subjects

(14 left-handed) with typical language laterality. The sample was powered to detect

rare, highly penetrant, monogenic effects if they would be present in at least 10 of

the 33 RHLD cases and no controls, but no individual genes had mutations in more

than five RHLD cases while being un-mutated in controls. A hypothesis derived from

invertebrate mechanisms of left-right axis formation led to the detection of an

increased mutation load, in RHLD subjects, within genes involved with the actin cyto-

skeleton. The latter finding offers a first, tentative insight into molecular genetic influ-

ences on hemispheric language dominance.

K E YWORD S

brain asymmetry, DNA, dominance, functional MRI, genetics, hemispheric lateralization,

language, laterality, next generation sequencing, whole genome sequencing

1 | INTRODUCTION

Noninvasive imaging methods such as functional magnetic resonance

imaging (fMRI) have shown that roughly 85% of people have left-

hemisphere language dominance, while most remaining people are

ambilateral for language, and only a small minority of around 1% show

rightward hemisphere language dominance (RHLD).1–3 The degree of

laterality assessed with fMRI varies with the type of language task

used and is usually more pronounced for language production than

perception tasks.4 Roughly 90% of people are right-handed, 10% left-

handed and a small remainder ambidextrous.5 Although more than

70% of left-handers have left-hemisphere language dominance,3 over
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90% of people with RHLD are also left-handed.3 Therefore, RHLD

usually involves a broader re-organization of left-right laterality than

purely for language functions, but may represent an etiological group

that is distinct from the bulk of left-handers.

Gene expression and in utero ultrasound studies of human

embryos have indicated that lateralized development is already under-

way in the human central nervous system by 5 to 8 weeks post-

conception,6–8 which indicates a genetic-developmental program

underlying the typical form of functional brain laterality. One study

reported a nonsignificant heritability (<1%) for the laterality of speech

sound perception, based on the dichotic listening method, and consid-

ering the full range of trait variation from left- to right-ear-advantage.9

However, atypical functional language dominance, that is, a categori-

cal trait defined to include both RHLD and ambilateral dominance, has

been shown to have a heritability of roughly 30%, measured with

functional transcranial Doppler sonography during language produc-

tion.9,10 There have been no twin or family-based studies of RHLD

heritability itself, likely due to the rarity of the trait. Twin and family

studies have reported moderate heritability estimates for left-

handedness (24%-39%),10,11 although heritability estimates based on

genomic similarity between unrelated people in the general popula-

tion are much lower for left-handedness (heritability = 1%-3%).12,13

Regardless, molecular mechanisms for the initial “symmetry break-

ing” process in the mammalian brain, that is, for establishing a left-

right axis in the very early embryo, remain unknown.14 In contrast,

much is known about the developmental origins of asymmetry of the

visceral organs (ie, heart, lungs and so on). Increased activation of the

nodal signaling cascade on the left side of an early embryonic struc-

ture, called the node, ultimately results in asymmetric organogene-

sis.15 Motile cilia within the node are important for this process,

because their unidirectional rotation, arising from the chirality of their

protein constituents, produces a right-to-left fluid flow that triggers

left-sided nodal expression.15,16 Monogenic mutations in genes that

encode components of motile cilia, or otherwise affect ciliary func-

tions, can cause the disorder primary ciliary dyskinesia (PCD) together

with situs inversus totalis (SIT), a condition affecting roughly 1/6000

to 1/8000 people, in which the visceral organs are placed as the mir-

ror image of the usual arrangement.16,17 PCD with SIT is a genetically

heterogeneous condition, which can be caused by mutations in at

least 37 different genes,18 although one gene accounts for 15% to

28% of cases (DNAH5).19,20

Intriguingly, people with PCD and SIT do not show an increased

rate of RHLD or left-handedness, which suggests a fundamental dis-

sociation between nodal-ciliary mechanisms of visceral axis formation

and the brain functional lateralities for language and hand

dominance.21–23 Thus, the typical form of human brain functional

laterality may instead originate from a genetic-developmental mecha-

nism that is brain-intrinsic. Recent studies in Drosophila have showed

that cellular chirality induces left-right asymmetry of individual organs

in an organ-intrinsic manner, without being induced by the ciliary-

nodal pathway.24–27 In these mechanisms, chirality is a transient prop-

erty of whole cell morphology at key points in embryonic develop-

ment.24 A role of actin-related genes in establishing cellular chirality

has been observed in both invertebrate (Drosophila, snail)24–27 and

vertebrate models (cultured cells, frog, zebrafish),24,28,29 suggesting

that this mechanism is important to establish left–right organ asym-

metry across bilaterian groups. Apart from the cilia-related nodal sig-

naling pathway, cellular chirality is the only biological mechanism that

has been shown to give rise to organ asymmetry in multicellular ani-

mals, of which we are aware.

Recent analyses using the UK biobank data set, based on more

than 300 000 participants, have reported that alleles of the

microtubule-associated gene MAP2 have very small effects on the

probability of becoming left-handed, as well as some other loci which

did not clearly implicate individual genes.30,31 However, the rarer trait

of RHLD, found in only roughly 10% of left-handers and less than 1%

of right-handers, has not been subject to any previous molecular

genetic studies. By analogy with SIT, here we investigated whether

RHLD might sometimes arise due to high-penetrance genetic muta-

tions. We sequenced the genomes of 33 people with RHLD as

assessed using fMRI, as well as 34 typically lateralized subjects

(20 right-handed, 14 left-handed) and interrogated the data with ref-

erence to large population genetic databases (Figure 1).

As this was an exploratory study, we performed separate analyses

under recessive and dominant models, allowing for allelic heterogene-

ity (different causative mutations within a given gene) or genetic het-

erogeneity (causative mutations in different genes). We also tested

for an increased rate of rare mutations in RHLD within specific candi-

date gene sets, in case an increased load of mutations affecting spe-

cific biological processes might increase the chance of having RHLD.

The candidate sets included genes involved in visceral laterality or the

actin cytoskeleton, as well as a set of 18 genes which have been ten-

tatively associated with human brain laterality in previous

studies.14,30,32

2 | METHODS

2.1 | Data sets and functional laterality measurement

A total of 67 participants (33 with RHLD) were included in the present

study, all of whom gave written informed consent. All RHLD subjects

except one were left-handed (Edinburgh Handedness Inventory [EHI]

median = −87.50), while the controls included 14 left-handed and

20 right-handed participants (EHI median = 76.39; this composition

allowed us to perform post hoc analysis using control groups of differ-

ent handedness, see below). Summary statistics for language laterality

measures and handedness are provided in Table 1, Figure 2 and

Figure S2.

The subjects in this study were recruited from two separate

sources, that is, the BIL&GIN data set (France) and the GOAL data set

(Belgium).

2.2 | BIL&GIN

Seventeen RHLD subjects and 22 controls were drawn from a larger

data set of healthy, young adults, balanced for handedness (N = 297,
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Contrast at single gene 
and gene-set levels

Genome sequencing

Protein-altering mutations, rare according to large 
population databases

Language task fMRI

Typical Rightward Hemispheric Language Dominance

L R L R

F IGURE 1 Schematic figure
showing the study design. Images are
shown from an example subject with
typical left-hemisphere language
dominance, and an example subject with
atypical RHLD, as assessed by fMRI.
Genomic analysis was focused on rare,
protein-altering variants within genes
and candidate gene-sets

TABLE 1 Summary statistics for language laterality measures and handedness, within the 67 participants of this study

Data set Group N Sex (M/F) Handedness (LH/RH) EHI HFLIPROD HFLIREAD HFLILIST

BIL&GIN RHLD 17 8/9 16/1 −22.92 [−100;100] −58 [−72;-15] −61 [−84;24] −59 [−72;52]

Controls 22 10/12 14/8 −77.78 [−100;100] 61 [29;83] 59 [16;84] 57 [25;79]

GOAL RHLD 16 4/12 16/0 −100 [−100;-16] −77 [−94;-45] - -

Controls 12 0/12 0/12 90.5 [67; 100] 83 [49;90] - -

Note: See also Figure 2.

Abbreviations: EHI, Edinburgh Handedness Inventory score: median [min-max]. Median [min; max] values are shown for the three HFLI indexes. PROD,

production; READ, reading; LIST, listening.
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F IGURE 2 HFLI distributions for
the language task contrasts within
RHLD and control subjects. Negative
HFLIs indicate rightward functional
laterality. Note that GOAL samples
were only assessed using
Production HFLI
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of which 153 left-handers).3 Informed consent was obtained from all

participants, and the study was approved by the Basse-Normandie

local ethics committee (reference: CPP-2006-16).

We studied hemispheric lateralization for three language tasks,

namely production, reading and listening, using fMRI to calculate Global

Hemispheric Functional Laterality Indexes (HFLIs), as described previ-

ously.33 Each participant underwent a slow event-related functional

MRI protocol including three runs, one for each language task, pres-

ented in a random order. The three runs followed the same structure,

alternating execution of the task at the sentence level and at the word

list level. Word lists used in the tasks consisted of ordered lists of the

months of the year or days of the week. fMRI was performed on a

Philips Achieva 3Tesla MRI scanner. For each run, functional volumes

were acquired with a T2
*-weighted echo planar imaging acquisition

(192 volumes; repetition time (TR) = 2 seconds; echo time (TE) = 35 ms;

flip angle = 80�; 31 axial slices; 3.75mm3 isotropic voxel size).

fMRI data analysis was performed using the SPM5 software

(www.fil.ion.ucl.ac.uk/spm/). Scans of each participant and each run

were normalized to our site-specific template, corrected for motion

during the run, and then warped into the standard montreal neurologi-

cal institute (MNI) space using a tri-linear interpolation, with subse-

quent smoothing using a 6-mm full width at half maximum (FWHM)

Gaussian filtering. We then computed for each participant the BOLD

signal difference maps and associated t-maps corresponding to the

“sentence vs word-list” contrast for the production, reading and listen-

ing runs. For each individual and each language task, we computed a

HFLI using the LI-toolbox applied to the individual contrast t-map of

the considered language task.34

A two-step procedure was then implemented to select RHLD sub-

jects and typically lateralized controls. We first selected the 10 individ-

uals previously identified as strongly right-lateralized in this data set

using a stringent criterion based only on language production (HFLI

for language production < −50).3 Then, to identify individuals

exhibiting a right-lateralized profile in all three language conditions,

but who may have been overlooked in the first-step, we modeled the

joint distribution of the three HFLI using a mixture of 3D Gaussian

functions and applied a robust consensus clustering approach.35 This

second step uncovered 14 individuals having HFLI values < −15 for

each of the three language conditions, including seven of those

already selected in the first step. In total, 17 subjects were thus identi-

fied as having RHLD on the basis of their HFLIs for production, read-

ing and listening. These 17, plus another 22 control subjects with

typical left-hemisphere language dominance, comprised the 39 BIL&-

GIN participants of the present study. HFLI distributions for RHLD

and controls subjects are shown in Figure 2. The median age of RHLD

subjects was 23 years, range 19 to 38 years, and for controls the

median age was also 23 years, range 19 to 38 years. Information on

sex is given in Table 1. We deliberately over-represented left-

handedness in our selection of control subjects (14 left-handed out of

22) to carry out post hoc analysis with respect to handedness (see

Results). Handedness was assessed based on the Edinburgh

inventory.36

3 | GOAL

Sixteen RHLD participants were selected from a larger data set of

healthy left-handers (N = 250)37 that was first evaluated using the

behavioral visual half field task to identify likely RHLD subjects, and

then confirmed using fMRI to calculate Global HFLIs based on a lan-

guage production task.2 Participants were asked to covertly think of

as many words as possible beginning with a letter presented in the

middle of the screen for 15 seconds. Ten different letters were pres-

ented in randomized order. The baseline condition consisted of

10 15-second blocks with silent repetition of the non-word baba.

Experimental and baseline blocks were alternated with 20 rest periods

of again 15 seconds, during which a horizontal line was displayed at

the screen center. Images were acquired on a 3-Tesla Siemens Trio

MRI scanner (Siemens Medical Systems, Erlangen, Germany) with an

8-channel radiofrequency head coil. First, a high-resolution anatomical

image was collected using a T1-weighted 3D MPRAGE sequence

(TR = 1550 ms, TE = 2.39 ms, image matrix = 256 × 256,

FOV = 220 mm, flip angle =9�, voxel size =0.9mm ×0.9mm ×0.9mm).

Functional images were then obtained using a T2
*-weighted gradient-

echo EPI sequence. Forty axial slices covering the whole brain were

acquired (TR = 2630 ms; TE = 35 ms; flip angle = 80
�
; image mat-

rix = 64 × 64, FOV = 224 mm, slice thickness = 3.0 cm, distance

factor = 17%, and voxel size = 3.5 mm × 3.5 mm × 3 mm).

The 16 strongly right-lateralized individuals all met a stringent cri-

terion for RHLD (HFLI for language production < −50).2 Twelve con-

trols were collected separately but their language lateralization was

assessed using the same fMRI paradigm. The 12 controls each had a

strongly leftward HFLI score (>50). HFLI distributions for RHLD and

controls subjects are shown in Figure 2, and information on sex is

given in Table 1. The median age of RHLD subjects was 24.5 years,

range 20 to 29 years, and for controls the median age was 19 years,

range 18 to 24 years. All control subjects were right-handed in the

GOAL data set as assessed by the Edinburgh inventory.36

Informed consent was obtained from all participants, and ethical

approval for the study was obtained from the Ethics Committee of

the Ghent University Hospital.

4 | WHOLE GENOME SEQUENCING, PRE-
PROCESSING AND VARIANT CALLING

4.1 | BIL&GIN

Whole genome sequencing (WGS) of the 39 BIL&GIN subjects was per-

formed using Illumina's HiSeq technology by the genomics research

organization and service company BGI (Hong Kong/Shenzhen) (https://

emea.illumina.com/systems.html). Thirteen additional subjects of

European descent, who were not part of the present study, were also

sequenced at the same time, and their data processed together with

the 39 through preprocessing and variant calling stages (as some of the

processing steps below benefit from being run on the greatest sample

size available; a minimum of 30 is recommended38).
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Sequencing was performed at 20 times average coverage depth,

with 90 base pair (bp) paired-end reads for 11 of the RHLD subjects

and 14 controls, and 150 bp paired-end reads for six RHLD subjects

and eight controls. Raw reads were cleaned by excluding adapter

sequences, reads with low-quality bases for more than 50% of their

lengths, and reads with unknown bases for more than 10% of their

lengths. Clean reads were mapped onto the human reference genome

(hg19) using the software Burrows-Wheeler Aligner.39 Bam files were

sorted using SAMtools v1.2 40 and polymerase chain reaction (PCR)

duplicate reads were marked using Picard v1.134. Re-alignment

around indels (insertion/deletions), and base quality control rec-

alibration was performed using the Genome analysis toolkit software

(GATK v3.5).41,42 Genetic variants were called using the

HaplotypeCaller (HC) tool of GATK (v3.5). HC was run separately per

sample using the “-ERC GVCF” mode, and then merged together using

the GenotypeGVCFs tool, as recommended in the GATK best prac-

tices. We performed Variant Quality Score Recalibration (VQSR) to

exclude low quality variants (phred-scaled Qscore <30) and to flag the

rest into the sensitivity tier they fell into (90, 99, 99.9 and 100).

These variants were then normalized, and variants belonging to

any VQSR sensitivity tier over 99% were excluded. For the 39 BIL&-

GIN subjects of this study, the variant calling of SNPs and indels iden-

tified on average 4 165 806 variants per subject for the 90 bp

protocol (range: 4 079 049-4 330 101), and 4 484 638 per subject for

the 150 bp protocol (range: 4 354 345-4 657 333).

5 | GOAL

The genomics company Novogene (Hong Kong/Shenzhen) performed

WGS on the 28 samples of the GOAL data set using Illumina's HiSeq

Xten technology, and paired-end sequencing with reads of 150 base

pairs and 30x sequence depth. The same pipeline as that applied to

the BIL&GIN data was used for alignment (build 37), variant calling,

annotation and filtering (but updated to SAMtoolsv1.3.1, Picard

v2.0.1, GATK v4.0.1.1 and Gemini v20.0.1, as sequencing of the

GOAL subjects was performed later). The variant calling and VQSR

steps were carried out together with data from 34 European-descent

subjects who were not part of the present study, again because these

steps benefit from a larger number of subjects. These variants were

then normalized using the software tool vt normalize

(v0.5772-60f436c3)43 and variants belonging to any VQSR sensitivity

tier over 99% were excluded. This process resulted in an average of

4 518 323 SNPs and indels per subject (range: 4 318 448-4 701 297).

5.1 | Stratification and inbreeding

Within the BIL&GIN and GOAL data sets separately, population struc-

ture was assessed by calling genotypes from the sequence data for

selected sets of common variants (BIL&GIN: 77 553 variants, GOAL:

41 273 variants) spanning the autosomes. These were high-

confidence single-nucleotide polymorphism (SNP) sites identified by

the 1000 Genomes Project, 1000G_phase1.snps.high_confidence.

hg19.vcf.gz with minor allele frequencies (MAFs) > 10% in each data

set,38 and had been pruned to be in low linkage disequilibrium

(LD) with one another using the program PLINK (v1.9) (maximum LD

r-square 0.2).44,45 Multidimensional scaling was used to visualize the

major dimensions of genome-wide variability (Figure S1). None of the

first five dimensions was associated with the RHLD vs control distinc-

tion in either of the data sets (all |T| < 1, P > .33). Inbreeding was

assessed with the F coefficient estimate within each data set using

PLINK (v1.9).45 The measure was not associated with the RHLD vs

control distinction in either data set (both |T| < 1, P > .39).

Note that common genetic variants were only used for the pur-

poses of assessing population stratification and inbreeding within the

data sets, whereas the rest of the study was focused on rare genetic

variation, which has the potential to involve highly penetrant effects.

5.2 | Annotation of SNPs and indels

SNPs and indels were annotated using Annovar46 and Variant Effect

Predictor (v88).47 In the genome, nonsynonymous protein-coding var-

iants, and variants which affect splice donor and acceptor sites, are a

priori the most likely to grossly alter gene function. Accordingly, Gem-

ini (v.20.0)48 was used to select protein coding variants with

“MEDIUM” or “HIGH” impact severity annotations, as well as noncod-

ing variants with “HIGH” impact severity annotations (in practice

those altering splice donor or acceptor sites). Additional filtering was

performed in R and comprised the removal of “MEDIUM” variants

with a PolyPhen49 prediction score of “benign”. MAF information was

assigned as the maximum MAF across the GNOMAD (v1), ExAC (v3),

1KG, and ESP data sets (ie, “max_aaf_all” in Gemini), which together

comprise whole exome or whole genome data from more than

120 000 people from various population data sets50 (http://evs.gs.

washington.edu/EVS/, http://www.internationalgenome.org/home).

Within the BIL&GIN and GOAL data sets separately, any variants pre-

sent in at least 19 participants (case or control) were excluded as they

are likely to be platform-specific errors or else common variants not

previously detected by other sequencing platforms or protocols, and

would necessarily be present in at least two control subjects in BIL&-

GIN or three controls in GOAL (hence unlikely to be high-penetrance

mutations for RHLD).

5.3 | Monogenic mutation models

Recessive: Here, we considered only homozygous or compound het-

erozygous mutations as potentially trait-causal. For screening pur-

poses, compound heterozygosity was assigned when a given gene had

at least two different mutations, although allelic phase information

was not usually available due to the limited sequence read lengths.

Variants were excluded when they had MAF ≥ 10% on the basis of

on-line population databases (see above). At 10% MAF, assuming

Hardy-Weinberg equilibrium, the variant would be present in homozy-

gous form at 1% in the population, that is, roughly equal to the RHLD

frequency in the population. In the case that 50% penetrance might

arise from L-R randomization, as has been observed for mutations
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which cause situs inversus with PCD,51 it is theoretically possible that

a single causal variant in a gene could have up to 14% population fre-

quency under a recessive model and Hardy-Weinberg equilibrium,

and still be consistent with a trait frequency of 1%, if it was the only

variant involved and caused all cases of the trait. However, allelic and

genetic heterogeneity are typical for monogenic traits. Therefore a

MAF threshold of 10% under a recessive model is an inclusive rather

than strict filter. Variants not present or with no MAF information in

the population databases were retained. There were on average

43 recessively mutated genes per subject for the BIL&GIN-90 bp pro-

tocol (range: 31-61), 64 per subject for the BIL&GIN-150 bp protocol

(range: 55-77), and 45 per subject for the GOAL data set (range:

33-64). Integrative Genome Viewer (IGV v2.3.55) was used to visual-

ize the possible compound heterozygous mutations, and genes carry-

ing these were discarded when both mutations were definitely

present on the same allele (ie, “in phase”) on a given sequence read.

Dominant: Here, we considered heterozygous or homozygous

mutations as potentially trait-causative. Variants were excluded as

potentially causative when they had population MAF ≥ 1% in the pop-

ulation databases, on a similar logic as for the recessive model above,

but appropriate for allelic dominance and the frequency of RHLD in

the population (roughly 1%). Variants not present or with no MAF

information in the population databases were retained. There were on

average 196 genes per subject for the BIL&GIN-90 bp protocol

(range: 154-215), 240 per subject for the BIL&GIN-150 bp protocol

(range: 208-268), and 262 per subject for the GOAL data set (range:

229-300).

5.4 | Gene-level testing

The BIL&GIN and GOAL data sets were combined for subsequent

analysis.

We first verified that the total number of mutated genes per

subject did not differ significantly between RHLD and control sub-

jects, under either the dominant or recessive model (t tests, all

P > .10). Significance for single-gene analysis was then assessed sep-

arately for individual genes and models (recessive or dominant),

using the one-tailed Fisher's exact test for a 2 × 2 contingency table,

for the categories “mutated” and “not mutated” in 33 RHLD subjects

and 34 controls. The minimum number of mutated RHLD subjects to

achieve a nominally significant P value (ie, less than .05) was 5, that

is, if a gene would be mutated in five out of the 33 RHLD subjects

and none of the 34 controls, that gene would show a nominally sig-

nificant P value of association with RHLD, as a putative major-

genetic effect (P value = .0267). This approach allows for allelic het-

erogeneity, that is, the unit of testing is the gene, within which a

variety of different mutations can be present. Note that the power

and sample size considerations when modeling highly penetrant

effects are different to typical genome-wide association studies of

common traits, in which large samples are screened for common var-

iants of small effect. Here, we focus only on rare variants and inter-

rogate the data with respect to the possibility of high penetrance.

Note also that the Fisher's exact test is robust for the sample size,

because the significance is assessed with respect to all of the actual

possibilities that might have arisen in the contingency table in this

set of subjects.

We calculated that for an individual gene to be significant at

P < .05 after Bonferroni multiple testing correction, it would have to

be mutated in at least 11 (dominant) or 10 (recessive) of the 33 RHLD

subjects, and no controls, leading to nominal P = .000186 (dominant)

or P = .000373 (recessive) in the Fisher's exact test, that is, the gene

would need to be a monogenic cause for roughly one third of the

instances of RHLD. For these calculations, we counted how many

individual genes, y, have mutations in at least x subjects, for every

value of x from 1 to 67 subjects. For each value of x, we then calcu-

lated the minimum number of RHLD subjects with mutations in a

given gene that would be required to produce a P value less than

.05/y in the Fisher's exact test.

We performed a post hoc filtering step in which we further

excluded from consideration, as potentially monogenic effects, all

genes which were mutated in at least one control subject, as these

genes were unlikely to be causal monogenically for RHLD. Note that

this filter was only applied after the statistical analysis, in order not to

bias the multiple testing correction.

5.5 | Mutational load in gene sets

We tested whether the RHLD cases had an increased mutational

load in specific candidate gene-sets (see the Introduction for the

rationale). These candidate sets, based on the gene ontology (GO) as

defined within AmiGO's direct annotation52,53 (http://geneontology.

org/gene-associations/goa_human.gaf.gz downloaded 16-Nov-

2017), were “cilium” (GO:0005929), “left-right axis specification”

(GO:0070986), “actin cytoskeleton” (GO:0015629), plus two sets

defined on the basis of visceral laterality phenotypes or disorders:

58 genes related to PCD and asymmetry disorders18; 62 genes

either implicated in visceral asymmetry disorders or known to be

involved in the visceral left-right developmental pathway,20 as well

as a final set of 18 candidate genes which have been tentatively

associated with human brain laterality in previous studies.14,30,32

The GO terms were defined within AmiGO's52,53 direct annotation

(http://geneontology.org/gene-associations/goa_human.gaf.gz, down-

loaded 16-Nov-2017). Additional sets were investigated post hoc as

child sets of the actin cytoskeleton set (Table S2). Only gene sets

comprising at least 10 genes were considered.

To test for an increased mutational load within a given gene-set in

RHLD, the sum of the number of mutated genes (as defined above)

per subject within the set was compared between RHLD subjects and

controls by means of the one-tailed exact binomial test, that is, con-

sidering the sum of mutated genes per subject in RHLD subjects only,

the total sum across RHLD and controls combined, and the proportion

of all subjects who were RHLD (33/67). Again, as an exact test, the

binomial is robust for the subject sample size, and does not require

assumptions on the number of mutations per individual.
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5.6 | Association with handedness within the UK
Biobank

Because the large majority of people with RHLD are left-handed, any

monogenic contributions to RHLD would likely also be strongly pene-

trant for left-handedness. We checked whether a specific mutation of

interest in the gene TCTN1, rs188817098, which we initially consid-

ered a potential candidate for causing RHLD in some subjects (see

Results), is also associated with handedness the UK Biobank cohort

data. There were 330 474 subjects (32 367 left-handed) available for

this analysis. In this data set, rs188817098 had been directly gen-

otyped and was in Hardy Weinberg equilibrium (P = 1), and the minor

allele C had a frequency of 0.001305. Handedness (UK biobank field

ID: 1707.0.0) was self-reported and coded for the present purposes

as “left-handed” or “right-handed”, as described elsewhere.54 We per-

formed association analysis of rs188817098 with handedness using

the program BOLT-LMM (v2.3) which uses linear mixed effects

regression under an additive genetic model.55 The top 40 principal

components capturing genetic diversity in the genome-wide genotype

data, calculated using fastPCA56 and provided by the UK biobank,57

were included as covariates to control for population structure, as well

as sex, age, genotyping array, and assessment center. The UK Biobank

data were obtained as part of research application 16 066, with Clyde

Francks as the principal applicant. The data collection for the UK Bio-

bank has been described elsewhere.58 Informed consent was obtained

by the UK Biobank for all participants.

6 | RESULTS

6.1 | Monogenic mutational models

We focused on mutations in the 33 RHLD cases which are known to

be relatively rare in the general population on the basis of large-scale

genetic databases and predicted to disruptively affect protein

sequence, while not being mutated in a set of 34 control subjects (see

Methods). As noted above, a given gene would need to be a mono-

genic cause for at least 10 or 11 of the 33 RHLD cases in this study,

and not mutated in controls, to be detected at a significant level after

multiple testing correction. There were no genes which met this

threshold, under either the dominant or recessive models.

Under a recessive model, no gene was even nominally significant

(ie, showed unadjusted P < .05), which could have arisen from being

mutated in as few as five RHLD cases and no controls.

In the dominant model, TCTN1 was the only nominally significant

gene (P = .0267 before multiple testing correction), with five RHLD

cases and no controls having heterozygous mutations (Table 2).

TCTN1 encodes a member of a family of secreted and transmembrane

proteins and is a component of the tectonic-like complex, which forms

a barrier between the ciliary axoneme and the basal body.59 This gene

tolerates missense and loss of function variation well (as reflected by

the ExAC missense Z-score50: z = 0.20). Recessive mutations in

TCTN1 cause Joubert syndrome (JBTS, MIM #614173), a ciliopathy

characterized by cerebellar and brainstem malformations.59,60 T
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Three of the five RHLD cases shared the same TCTN1 missense

variant (chr12:111080154 G/C, rs188817098), which has a maxi-

mum population frequency of 0.001199 (in ExAC non-Finnish

Europeans). This variant is present in ClinVar (https://www.ncbi.nlm.

nih.gov/clinvar/) as a variant of uncertain significance with potential

relevance to Joubert syndrome/Meckel-Gruber syndrome patients

(SCV000634600.1). The other two TCTN1 mutations were a mis-

sense variant (chr12:111078865 G/C, rs201990420) and an in-

frame deletion (chr12:111070349 GATA/G), each present in one

RHLD case only, and with maximum population frequencies of

0.0008 and 0.0033, respectively.

Rs188817098 was also associated with handedness in the UK bio-

bank data set (P = .034), with the minor allele C (frequency 0.001305)

associated with left-handedness (odd ratio = 1.24). However, this

modest effect does not seem compatible with a role of this variant as

a highly penetrant cause of RHLD and left-handedness.

6.2 | Gene-set analysis

We analyzed a small number of candidate gene sets involved either in

visceral laterality or else the actin cytoskeleton (see Introduction for

the rationale). We observed an enrichment of mutations within the

‘actin cytoskeleton’ (GO:0015629) gene-set (Table 3). This gene set

comprises 205 human genes (Table S1) which contribute to the actin

cytoskeleton, that is, the internal framework of the cell, composed of

actin and associated proteins. Within the genomes of the 67 partici-

pants of this study, there were 171 different mutations present in

92 genes belonging to this set. About 59.6% of the instances of

mutated genes (102 out of 171) were in the subjects with RHLD,

whereas the null probability of a mutated gene falling in a subject with

RHLD was 49.25% (ie, 33/67), exact binomial test P = .0040 (Table 3

and Figure S3). This suggests that individuals with RHLD have a signif-

icant enrichment of rare, disruptive mutations in genes involved in

actin cytoskeleton structure and function.

In contrast, no differences were found between participants with

RHLD and controls for the GO sets “cilium” (GO:0005929), “left-right

axis specification” (GO:0070986), or sets defined on the basis of vis-

ceral laterality phenotypes or disorders,18,20 as well as the set of

18 candidate genes which have been tentatively associated with

human brain laterality in previous studies (Table 3), consistent with

language dominance being largely or wholly independent of these

pathways/sets.

We investigated subsets of genes defined as belonging to specific

components of the actin cytoskeleton, which included “actin filament”

(GO:0005884), “myosin complex” (GO:0016459), and “cortical actin

cytoskeleton” (GO:0030864), but saw no significant increase in muta-

tion rates in RHLD in these sets (Table S2). This may indicate that sub-

sets of actin cytoskeleton genes that are more specifically relevant to

lateralized brain development have not been defined within the GO.

Post hoc analysis of mutational load within the actin cytoskeleton

gene set was further performed in different subsets of subjects

according to handedness: RHLD vs right-handed controls only

(P = .04), RHLD vs left-handed controls only (P = .004), right-handed

controls vs left-handed controls (P = .88) (Table S3). This pattern indi-

cates that left-handedness without RHLD is not linked to an increased

rate of mutations in actin cytoskeleton genes, and that the tentative

increase was a specific property of the RHLD subjects.

Per data set analysis showed that the increased mutational load in

the actin cytoskeleton gene set was mostly driven by the BIL&GIN

data set (P = .0006), while the effect was not significant in the GOAL

data set (P = .4) despite having a similar trend of increased mutational

load in RHLD cases (Table S4, Figure S3).

7 | DISCUSSION

Laterality is an important feature of the human brain's structural and

functional organization.14,61,62 Despite this, very little is known of the

genetic contributions to typical brain laterality and its variation. In the

present study, we performed the first molecular genetic investigation

of RHLD, a trait which is present in only roughly 1% of the population.

We focused on relatively rare coding variants that are predicted to

disrupt protein functions. A highly penetrant mutated gene in roughly

one-third of the RHLD cases, and no controls, could have been

detected at a significant level after adjusting for multiple testing in this

study. This is a similar level of genetic heterogeneity as found in situs

inversus of the visceral organs when it occurs together with PCD, for

TABLE 3 Mutation load analysis of candidate gene sets

Gene set Set size GO ID RHLD Total P

Actin cytoskeleton 205 GO:0015629 102 171 .004048

Cilium 173 GO:0005929 86 177 .60

Left/right axis specification 13 GO:0070986 6 13 .69

Reiter & Leroux18 58 - 25 49 .46

Deng et al20 63 - 29 60 .61

Francks14Gunturkun & Ocklenburg32de Kovel & Francks30 18 - 21 41 .46

Note: Set size: number of genes within set. RHLD: instances of genes carrying mutations within RHLD cases; Total: instances of genes carrying mutations

in RHLD cases and controls combined. The P-value is shown from the exact binomial test, where the null probability was .493 (33/67 participants being

RHLD) and alternative hypothesis = “greater”. Reiter & Leroux (2017): 58 genes related to primary ciliary dyskinesia and asymmetry disorders. Deng et al

(2015): 62 genes either implicated in visceral asymmetry disorders or known to be involved in the visceral left-right developmental pathway. Francks

(2015), Gunturkun & Okclenburg (2017), de Kovel & Francks (2018): 18 genes previously associated with brain/behavioral laterality phenotypes in humans.
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which up to roughly one quarter of cases are due to mutations in a

single gene, DNAH5 19.

However, we found no individual genes mutated in RHLD at this

level, in the present study. It remains possible that some monogenic

causes of RHLD were present in our data set, but we could not dis-

tinguish them with the present sample size. Note that the sample

size precluded an investigation of common genetic effects with low

penetrance, that is, the kinds of effects that are tested in typical

genome-wide association studies of common traits. The approach

here was necessarily focused only on rare variants, which might have

sometimes acted as highly penetrant mutations. Nonetheless, it

appears on the basis of our data that substantial genetic heterogene-

ity is likely to be involved in any heritable contribution to RHLD,

even if some individual effects might be strongly penetrant. As

noted in the introduction, non-leftward language dominance has

previously been shown to have a heritability of roughly 30%,

although the trait definition in that study included ambilateral indi-

viduals in addition to RHLD.10

As RHLD is mostly found in left-handed people,3 and comprises

roughly 10% of the left-handed population, then any highly pene-

trant genetic effects on RHLD would presumably also be strongly

associated with left-handedness. One individual gene, TCTN1, car-

ried rare, protein-altering mutations in five RHLD cases and no con-

trols. Three of these cases carried the same rare variant, and the

very large UK Biobank data set, comprising hundreds of thousands

of participants, allowed us to test this rare variant for association

with left-handedness. (No functional imaging measures of language

laterality were available in the UK Biobank to study RHLD in that

data set.) Although the TCTN1 variant showed a significant associa-

tion with left-handedness, in the expected direction (ie, the minor

allele associated with left-handedness), the effect size was not com-

patible with a highly penetrant effect. Therefore, this finding remains

ambiguous.

In the present study, candidate genes that have been tentatively

associated with human brain laterality in previous studies showed no

evidence for an increase in mutation load in RHLD. The only gene

among these that had more mutations in RHLD cases than those in

controls was AR (eight in RHLD cases, six in controls). For most of

these genes, there is no clear mechanism that might link them to left-

right axis determination through chiral properties.

We also found no evidence that candidate gene sets involved in

visceral laterality or PCD have an enrichment of rare, protein-

altering mutations in RHLD. This finding is consistent with the fact

that people with situs inversus of the viscera, when it occurs

together with PCD, have shown normal population rates of left-

handedness and left hemisphere language dominance.21–23 There-

fore, there appears to be a developmental disconnect between

nodal-ciliary-induced visceral laterality and the functional brain

lateralities for hand dominance and language. This suggests that at

least some aspects of human functional brain laterality arise from an

independent and unknown mechanism, which may be brain-intrinsic.

A molecular-developmental pathway for laterality in the zebrafish

brain has been relatively well described, but this appears to take its

original cues from the nodal-visceral pathway, and thus the rele-

vance for human functional brain laterality is not clear.63,64 A rela-

tively small-scale genome-wide association study in humans

reported that genes involved in visceral laterality showed an enrich-

ment of association signals with left-vs-right hand motor skill,65 but

a much larger study of binary-trait handedness in the UK Biobank

data set, based on roughly 350 000 subjects, found no genetic link

of handedness to visceral asymmetry genes.30 Early life factors can

also influence handedness, including birth weight, twinning and

breastfeeding, but to an extent which is not remotely predictive at

the individual level.54

Intriguingly, it may be that situs inversus of the visceral organs

does associate with left-handedness when not due to mutations

affecting the nodal ciliary pathway,23 although no causal genes were

identified in a recent study which investigated the trait combination

of situs inversus and left-handedness without PCD.66 Here, we found

initial evidence that people with RHLD have an elevated rate of rare,

protein-altering mutations in genes involved in the structure and func-

tion of the actin cytoskeleton. This effect was robust to the use of

either left or right-handed control groups, and thus was a specific

property of RHLD subjects in this data set, rather than left-

handedness in general. We speculate that functional language

laterality may be grounded in an evolutionarily ancient mechanism of

inducing organ-intrinsic left-right morphogenesis, which can be traced

back to the ancestral bilateria, and which arises from fundamental

aspects of cellular biology and mechanics.24,25,27 Developmental stud-

ies will be needed to assess whether cellular chirality is transiently

present before asymmetric embryonic development of the mammalian

brain. An understanding of how mutations of actin cytoskeleton genes

might affect such a process will depend on detailed analysis of cellular

models. An increased load of heterozygous mutations in genes affect-

ing the actin cytoskeleton might affect brain laterality, while being

otherwise well tolerated during development, due to compensation

by non-mutated alleles at most of the genes involved. Given that com-

mon variants of the microtubule-associated gene MAP2 have recently

been associated with left-handedness by large-scale GWAS,30,31 our

findings here in relation to RHLD may be broadly concordant, insofar

as they also implicate the cytoskeleton in the developmental origins

of human brain laterality.

The possible link of RHLD to actin cytoskeleton genes will need to

be replicated in larger independent data sets. Within the present

study, we combined the BIL&GIN and GOAL data sets to maximize

the power to detect genetic effects on RHLD, although the functional

tasks used to define RHLD differed between these two data sets:

hemispheric dominance was defined using a contrast at the sentence

level in BIL&GIN, and a word-level contrast in GOAL (see Methods).

However, we are not aware of a large-scale data collection in exis-

tence, or currently underway, in which a harmonized phenotypic mea-

sure of RHLD will become available and which would be well-

powered for GWAS.

Given the sample size for the present study, we focused on rare,

protein-altering mutations which had the potential to be highly pene-

trant effects. Whole genome sequence data, of the type produced in
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the present study, also contain information on noncoding variation.

Rare noncoding variation has recently been implicated in neu-

rodevelopmental disorders such as autism,67,68 and a significant frac-

tion of this variation is potentially important for gene function and

regulation.69 The noncoding genome comprises 98% of the genome,

and interpreting the variation within these regions is challenging. Sev-

eral attempts have been made to rank potentially causative variants

across the genome based on scores that integrate different types of

information, including conservation of DNA sequence, regulatory

information,70 and population genomic data. These ranking

approaches include CADD,71 DANN,72 GWAVA,73 M-CAP,74

MetaSVM75 or REVEL.76 However, these ranking approaches are not

very concordant with each other.69 Moreover, the methods rely on

assumptions about the deleteriousness/pathogenicity of variants, so

that the overall approach is not an obvious fit for a non-pathogenic

trait such as RHLD. Thus we did not pursue investigation of non-

coding variation, which must await larger sample sizes and an

improved understanding of the role of rare, non-coding variation in

non-disease phenotypic variation.

Data sets based on hundreds of thousands of participants, such as

the UK biobank,77 permit the estimation of how much of the variance

in brain traits can be explained by common genetic variants, and the

detection of genetic loci with very small effect sizes. However, the

use of such large data sets is usually at the expense of detailed and

accurate phenotypic characterization. Correlated structural78 or

resting-state derived indices79 may offer alternative ways to study

RHLD in large data sets, but these approaches will always be indirect.

Hence, the approach taken in the present study is complementary to

large-scale studies. We expect that convergent evidence arising from

different strategies will help us better understand the biological

underpinnings of language lateralization.
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